


# MgO:PPLN Crystals Chips for 532nm Laser Generation Using OC Mirrors

The MgO doped periodically poled lithium niobate (or MgO:PPLN crystals) is a kind of highly efficient nonlinear crystals, it can be used as the SHG, SFG, DFG, OPO and OPA components in the lasers. Hangzhou Shalom EO offeres the **MgO:PPLN crystals** chips of SHG 1064nm for 532nm laser generation with high-power up to 4 watts. Both surfaces of crystals are coated with the AR@1064nm and 532nm, the OC mirrors is needed in this type of the MgO:PPLN Chips.



#### Features

- Low cost
- High Power and high efficiency
- Small size
- OC mirrors needed
- Easy to be assembled into DPSS lasers



### SPECIFICATIONS

| Optical Specifications                          |                                                            |
|-------------------------------------------------|------------------------------------------------------------|
| Length                                          | 1.0~2.0mm                                                  |
| Width                                           | ~ 2.0mm                                                    |
| Thickness                                       | 0.5mm                                                      |
| Coating on Input facet                          | AR@1064nm + AR @532nm                                      |
| Coating on Output facet                         | AR@1064nm + AR@532nm<br>(Output Coupling mirror is needed) |
| Optical to Optical Efficiency<br>(intra-cavity) | <sup>3</sup> 30%                                           |
| Operation Temperature                           | ~ 33° C                                                    |
| Temperature Tolerance                           | > 25 ° C                                                   |

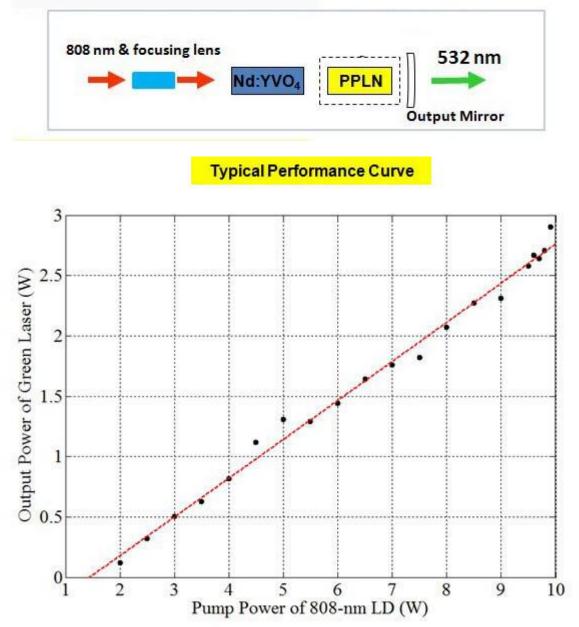
**Note:** The PPLN crystals with the Copper heat-sink packing is available.

| Polishing Specifications |                                                 |  |
|--------------------------|-------------------------------------------------|--|
|                          | (Width $\pm 0.1$ mm) x(Thickness $\pm 0.05$ mm) |  |
| Tolerance of Size        | V(l anoth + 0.1mm)                              |  |
|                          | X (Length±0.1mm)                                |  |
| Flatness                 | < Lambda/8 @ 633nm                              |  |
| Wavefront Distortion     | < Lambda/6 @ 633nm                              |  |
| Chips                    | <0.1mm                                          |  |
| Surface Quality          | 20/10 S/D                                       |  |
| Parallelism              | <10"                                            |  |
| Perpendicularity         | <10'                                            |  |



## **Basic Properties**

| Chemical and Physical Properties |                 |  |
|----------------------------------|-----------------|--|
| Melting Point                    | 1255+/-5 °C     |  |
| Curie Point/Temperature          | 1140+/-5 °C     |  |
| Mohs Hardness                    | 5               |  |
| Density                          | 4.648(5)g/cm3   |  |
| Thermal conductivity             | 38W/m/K @ 25 °C |  |
|                                  | //a, 2.0x10-6/K |  |
| Coefficient of thermal expansion |                 |  |
|                                  | //c, 2.2x10-6/K |  |


| <b>Optical and Nonlinear properties</b> |                       |  |
|-----------------------------------------|-----------------------|--|
| Wavelength range of Transmission        | 420nm ~ 5200nm        |  |
|                                         | d33 = 34.4 pm/V       |  |
| Nonlinear coefficient                   | d31 = d15 = 5.95 pm/V |  |
|                                         | d22 = 3.07 pm/V       |  |
| Optical Damaging Threshold              | 0.3GW/cm2             |  |
| Absorptive Coefficient                  | 0.004/cm @ 1064nm     |  |



### **Application Notes**

Typical Application Configurations for PPLN Chips using OC mirrors

#### Typical Application Configurations for PPLN Chips using OC mirrors

