

Ti:Sapphire Crystals

Titanium doped Sapphire (Ti:Sapphire) is the most widely used laser crystal for widely tunable and ultrashort pulsed lasers with high gain and high power outputs. The **Ti:Sapphire crystals** of ShalomEO is grown by the method of Temperature Gradient Technique (TGT), the large-sized (Dia.30x 30mm) Ti:Sapphire crystal in high quality free of light scatter, with the dislocation density less than 102cm-2 could be provided. The TGT grown sapphire crystal is characterized by the (0001) oriented growth, high doping level (a490= 4.0cm-1), high gain and laser damage threshold.

SPECIFICATIONS

Specifications		
Orientation	Optical axis C normal to rod axis	
Ti2O3 concentration	0.06 - 0.26atm %	
Figure Of Merit(FOM)	100~200	
a490	1.0-4.0cm ⁻¹	
Diameter	2-30mm or specified	
Path Length	2-30mm or specified	
End configurations	Flat/Flat or Brewster/Brewster ends	
Flatness	<λ/10 @ 633 nm	
Parallelism	<10 arc sec	
Surface finishing	<20/10scratch/dig to MIL-PRF-13830B	
Wavefront distortion	<λ/4 per inch	

Note: The AR Coating is available upon request.

Physical and optical properties		
Chemical formula	Ti ³⁺ : Al2O3	
Crystal structure	Hexagonal	
Lattice constants	a=4.758, c=12.991	
Density	3.98 g/cm3	
Melting point	2040°C	
Mohs hardness	9	
Thermal conductivity	52 W/m/k	
Specific heat	0.42 J/g/k	
Laser action	4-Level Vibronic	
Fluorescence lifetime	3.2µs (T=300K)	
Tuning range	660 - 1050 nm	
Absorbtion range	400 - 600 nm	
Emission peak	795 nm	
Absorption peak	488 nm	
Refractive index	1.76 @ 800 nm	
Peak Cross-section	3-4x10-19cm2	
thermal Expansion	8.40x10-6/ °C	

Application Notes

- The tunable wavelengths that cover a broad range from 700 to 1000 nm make Ti:Sapphire an excellent substitute for dye lasers in many applications.
- Doubling by NLO crystals such as BBO in an ultra-thin, Ti:Sapphire can be used to generate UV and DUV (up to 193 nm) laser with ultrafast pulses below 10fs.
- Ti:Sapphire is also widely used as the pumping source of OPOs greatly to expand the tunable range.