

Langasite (LGS) Crystals and Substrates

Langasite crystal (La₃Ga₅SiO₁₄,LGS), belonging to the space group P321, point group 32, has been reported to be promising new piezoelectric materials for fabrication of surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices. The devices made of langasite crystal could be used at a high temperature up to 900°C because of its high thermal stability.

Hangzhou Shalom EO offers the LGS crystals blanks, polished substrates and wafers upon customer's request.

SPECIFICATIONS

LGS crystals blanks or blocks				
X Direction	5~40mm			
Y Direction	5~40mm			
Z Direction	~80mm			
Direction Precision	±20′			

Langasite slices				
Diameter	5~14mm			
Frequency	2.7~21MHz			
Direction Precision	±20′			
Surface Roughness(Lapped)	Ra=0.3~0.5µm			

Sensor, SAW Wafers				
Diameter	6~76.2mm			
Thickness	0.13~0.5mm			
Reference Flat	2~15MM			
Surface Roughness (CMP single or double sides)	Ra≤1nm			
Qrientation	Following customer specifications			

Inches boules and CMP wafers.

Langasite crystal possesses some great properties, such as higher electromechanical coupling factor than quartz, no phase transition from room temperature to melt point. Some properties of langgasite crystal are shown in Table 1.

Table 1 Dielectric, elastic stiffness constants and their first order temperature coefficients of langasite crystal

Constant	Relative Dielectric Constant		Piezoelectric Constant (pC/N)			Elast	ic Stiffn	ess (10	¹¹ Pa)	
	ε11	ε33	d11	d14	c11	c12	c13	c14	c33	c44
Value	18.96	50.19	5.66	-5.48	1.898	1.058	1.022	0.144	2.626	0.535
First Order Temp.Coef. (10 ⁻⁶ .K ⁻¹)	150	-760	329	-342	-66	204	-75	-335	-94	-63

Table 2 Comparative properties of piezoelectric crystals

PropertiesCrystal	Quartz SiO ₂	Langasite La ₃ Ga ₅ SiO ₁₄	Lithium tetraborate Li ₂ B ₄ O ₇	Lithium tantalite LiTa ₃
Electromechanical Coupling Factor K,%(BAW)	7.0	15.8	24.0	47.0
Frequency Spacing ∆f,%	0.25	0.90	4.00	7.00
Q-Factor Q,x10 ³	100	50	10	2
Temperature Frequency Coefficient TFC, x10 ⁻⁶ /℃	0.5	1.6	6.0	4.0

With the rapid development of the communication technology, the new generation communication system enables people not only to talk, but also to transmit image, data and video. Langasite crystal possesses high SAW properties compared with quartz.which make it to be the most competitive material in this field. SAW preperties of langasite andquartz are listed in the Table 3.

Table 3 SAW	properties	of langasite	and Quartz
-------------	------------	--------------	------------

PropertiesCrystal	Quartz(SiO ₂)	Langasite(La ₃ Ga ₅ SiO ₁₄)	
Density,g/cm ³	2.65	5.746	
SAW Velocity V _{ef} ,m/s	(0º,132.75 º,0 º)3157	(0°,140 °,25 °)2756	
Electromechanical coupling factor K ² emc,%(SAW)	0.14	0.36	
Second order temp.coef. $a_{2,r}x10^{-8}/{}^{\circ}C^2$	-3.2	-6.8	
Temp. Coef. TTO, °C	25	23	
Dielectric Constant ε	4.92	27	
Power flow angle Φ , ^o	0	0.5	