

Magnesium Aluminate (MgAl2O4 or Spinel) crystals and Substrates

Magnesium Aluminate (MgAl₂O₄ or spinel) single crystals are widely used for bulk acoustic wave and microwave devices and fast IC epitaxial substrates. It is also found that MgAl₂O₄ is a good substrate for III-V nitrides device. Spinel (MgAl₂O₄) is one candidate for such GaN LDs substrate. The crystallographic structure of MgAl₂O₄ is a spinel type (Fd3m), and its lattice constant is 8.083 A. MgAl₂O₄ is a relatively low-cost substrate material, which has been successfully applied to the growth of high quality GaN films. MgAl₂O₄ is cleaved on the (100) plane. GaN LD cavities have been obtained by simply cleaving MgAl₂O₄ substrates along the (100) direction, which will also work well for ZnO. MgAl₂O₄ crystal is very difficult to grow, due to the difficulty in maintaining a single phase structure.

SPECIFICATIONS

Specifications		
Materials	MgAl2O4 single crystals	
Standard size(mm)	5x5,10x10,15x15,20x20,	
Thickness	0.5mm, 1.0mm	
Thickness tolerance	±0.05mm	
Dimension tolerance	±0.1mm or ±0.05mm	
Orientations	<111>, <100>,<110>	
Orientation error	6 arc seconds	
Perpendicularity	6 arc minutes	

Note: The boules, blanks and polished substrates are available.

Physical properties		
Crystal Structure	Cubic: a = 8.083 Å	
Growth Method	Czochralski	
Density	3.64 g/cm ³	
Melt Point	2130 °C	
Hardness	8.0 (Mohns)	
Thermal Expansion	7.45 (x10⁻⁶/℃)	
Phase Velocity	6500 m/s at (100> shear wave)	
Propagation Loss	6.5 dB/ms	
Typical growth direction	<100> and <110>	