

# **BaF2 lenses**

### $\bullet$ Wide wavelength range of 0.2-11 $\mu m$

### $\bullet$ Suitable for MWIR (3-5 $\mu m)$ thermal cameras

**Barium Fluoride** can be used in the ultraviolet, visible and infrared spectral regions. Barium Fluoride has transmission above 90% between 0.25 and 9.5µm. Barium Fluoride is half as hard as Calcium Fluoride and also more susceptible to thermal shock. However, it is commonly used in cryogenically cooled thermal imaging systems. It is somewhat more expensive than Calcium Fluoride and not as readily available in large sizes. Hangzhou Shalom EO offer the BaF2 lenses used in MWIR (3-5 micro) thermal imaging applications.



# **SPECIFICATIONS**

| Specifications         |                     |
|------------------------|---------------------|
| Materials              | BaF2 crystals       |
| Diameter range         | ~200mm              |
| Daimeter Tolerance     | +0.0/-0.2mm         |
| Thickness Tolerance    | +/-0.2mm            |
| Surface Quality        | 60/40 S/D           |
| Frings (N)             | 3                   |
| Irregularity (delta N) | 1                   |
| Centration             | 3'                  |
| Chamfer                | 0.1-0.3mmx45 degree |
| Coatings               | AR/AR@3-5micro      |

Note: the domes of other specifications is available upon customer's request.



Transmission curve of the BaF2 substrates of different thickness



# **Basic Properties**

| Physical and optical properties |                                      |
|---------------------------------|--------------------------------------|
| Transmission Range              | 0.15 to 12 µm                        |
| Refractive Index                | 1.45 at 5 μm (1)                     |
| Reflection Loss                 | 6.5% at 5 µm (2 surfaces)            |
| Absorption Coefficient          | 3.2 x 10-4 cm-1 @ 6 μm               |
| Reststrahlen Peak               | 47 µm                                |
| dn/dT                           | -15.2 x 10-6/°C (2)                  |
| $dn/d\mu = 0$                   | 1.95 μm                              |
| Density                         | 4.89 g/cc                            |
| Melting Point                   | 1386°C                               |
| Thermal Conductivity            | 11.72 W m-1 K-1 @ 286 K              |
| Thermal Expansion               | 18.1 x 10-6/°C @ 273 K               |
| Hardness                        | Knoop 82 with 500g indenter (4)      |
| Specific Heat Capacity          | 410 J Kg-1 K-1 (3)                   |
| Dielectric Constant             | 7.33 at 1 MHz                        |
| Youngs Modulus (E)              | 53.07 GPa (3)                        |
| Shear Modulus (G)               | 25.4 GPa (3)                         |
| Bulk Modulus (K)                | 56.4 GPa                             |
| Elastic Coefficients            | C11 = 89.2 C12 = 40.0 C44 = 25.4 (2) |
| Apparent Elastic Limit          | 26.9 MPa (300psi) (4)                |
| Poisson Ratio                   | 0.343                                |
| Solubility                      | 0.17g/100g water at 23°C             |
| Molecular Weight                | 175.36                               |
| Class/Structure                 | Cubic CaF2, Fm3m, (111) cleavage     |



Hangzhou Shalom Electro-optics Technology Co., Ltd.