

# MgO:LiNbO3 crystals

LiNbO $_3$  Crystal is widely used as frequency doublers for wavelength > 1µm and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices. Compared with pure LiNbO3, MgO:LN has higher optical damage threshold.Due to its large Electro-Optic (E-O) and Acousto-Optic (A-O) coefficients, LiNbO $_3$  crystal is the most commonly used material for Pockel Cells, Q-switches and phase modulators, waveguide substrate, and surface acoustic wave (SAW) wafers, etc. Hangzhou Shalom EO provides the MgO(0.6~1.0mol%):LiNbO3 and MgO(5mol%):LiNbO3 crystals, the custom crystals of blanks, polished and coated and electroded is available upon your request.





## **SPECIFICATIONS**

| Specification of MgO:LiNbO3 crystals |                                     |
|--------------------------------------|-------------------------------------|
| Crystal materials                    | MgO(0.6-1.0mol% or 5mol%):LiNbO3    |
|                                      | crystals                            |
| Size                                 | Customized                          |
| Size tolerance                       | +/-0.1mm                            |
| Length tolerance                     | +/-0.2mm                            |
| Surface quality                      | 20/10 S/D                           |
| Parallelism                          | <20 arc seconds                     |
| Flatness                             | < Lambda/10 @633nm                  |
| Perpendicularity                     | <5 arc minutes                      |
| Chamfer                              | 0.2mmx45°                           |
| Side surface                         | Fine ground                         |
| Orientation tolerance                | < 10 arc minutes                    |
| Wavefront distortion                 | <lambda 4@633nm<="" td=""></lambda> |



Note: crystals with other special specification is available upon request

## **Application Notes**

One of the most versatile nonlinear crystals, lithium niobate has a wide range of applications, including:

#### • Optical modulation and Q-switching.

Thanks to its large electro-optic coefficients, lithium niobate is well suited to optical modulation and Q-switching of infrared wavelengths. Among its advantages in these applications are:

- 1.Zero residual birefringence
- 2. Transverse electric field to direction of light propagation
- 3.Nonhygroscopic
- 4.Low half-wave
- 5. Second harmonic generation,particularly with low power laser diodes in the 1.3 to 1.55  $\mu m$  range.
- 6.Optical parametric oscillation. With its high nonlinear coefficients, lithium niobate is an efficient medium for optical parametric oscillation.

#### • Phasematching.

To generate tunable wavelengths over a broad wavelength range, lithium niobate phasematching processes offer:

- 1.Broad spectral transmission ranging from 0.4  $\mu m$  to 5.0  $\mu m$  with an OH- absorption at 2.87  $\mu m$
- 2.Large negative birefringence
- 3.Large nonlinear coefficients
- 4.Difference frequency mixing. Lithium niobate generates tunable infrared wavelengths through a difference frequency mixing process.

Typical powers for 10 nanosecond pulses and 5-µm beams are:

- 1.30 mJ/pulse of 0.640  $\mu m$  minus 40 mJ/pulse of 1.064  $\mu m$  to produce 2.5 mJ/pulse at 1.54  $\mu m$
- 2.32 mJ/pulse of 0.532  $\mu$ m minus 32 mJ/pulse of 0.640  $\mu$ m to produce 0.25 mJ/pulse at 3.42  $\mu$ m

## Magnesium Oxide Doped Lithium Niobate Crystals (MgO:LiNbO<sub>3</sub>)

Compared with  $LiNbO_3$  crystal,  $MgO:LiNbO_3$  crystal exhibits its particular advantages for NCPM frequency doubling (SHG) of Nd:Lasers, mixing (SFG) and optical parametric oscillators (OPOs). The SHG efficiencies

of over 65% for pulsed Nd:YAG lasers and 45% for cw Nd:YAG lasers have been achieved in MgO:LiNbO $_3$  crystals, respectively. MgO:LiNbO $_3$  is also a good crystal for optical parametric oscillators (OPOs) and amplifiers (OPAs), quasi-phase-matched doublers and integrated waveguide.

MgO:LiNbO<sub>3</sub> has similar effective nonlinear coefficients to pure LiNbO<sub>3</sub>. Its Sellmeier equations are:

 $n^{2}o(I) = 4.8762 + 0.11554/(I^{2} - 0.04674) - 0.033119 \times I^{2}(I \text{ in um})$ 

 $n^{2}o(l) = 4.5469 + 0.094779/(l^{2}-0.04439) - 0.026721 \times l^{2}$